;
Tampilkan postingan dengan label fisika. Tampilkan semua postingan
Tampilkan postingan dengan label fisika. Tampilkan semua postingan

Jumat, 24 Februari 2012

Perpindahan Kalor

Jumat, 24 Februari 2012

Beras yang dimasukkan ke dalam panci berisi air dan diletakkan di atas kompor menyala, lama-kelamaan akan menjadi nasi. Api kompor mengeluarkan kalor yang berpindah dari panci ke air kemudian air menjadi panas dan memanaskan beras sehingga beras menjadi nasi. Kamu telah mengetahui bahwa kalor merupakan salah satu bentuk energi dan dapat berpindah apabila terdapat perbedaan suhu. Secara alami kalor berpindah dari zat yang suhunya tinggi ke zat yang suhunya rendah. Bagaimana kalor dapat berpindah? Apabila ditinjau dari cara perpindahannya, ada tiga cara dalam perpindahan kalor yaitu:
  1. konduksi (hantaran),
  2. konveksi (aliran), dan
  3. radiasi (pancaran).

Perpindahan Kalor secara Konduksi
Cobalah membakar ujung besi dan ujung besi lainnya kamu pegang, setelah beberapa lama ternyata ujung besi yang kamu pegang lama kelamaan terasa semakin panas. Hal ini disebabkan adanya perpindahan kalor yang melalui besi. Peristiwa perpindahan dari ujung besi kalor yang dipanaskan ke ujung besi yang kamu pegang mirip dengan perpindahan buku yang kamu lakukan, di mana molekul-molekul besi yang menghantarkan kalor tidak ikut berpindah. Perpindahan kalor seperti ini dinamakan perpindahan kalor secara hantaran atau konduksi. Apakah setiap zat dapat menghantarkan kalor secara konduksi? Ambillah sepotong kayu, kemudian ujung yang satu dipanaskan sedang ujung kayu yang lainnya kamu pegang. Apakah ujung yang kamu pegang terasa panas? Ternyata tidak panas. Hal ini berarti bahwa pada kayu tidak terjadi perpindahan kalor secara konduksi.

Bahan yang dapat menghantarkan kalor disebut konduktor kalor, misalnya besi, baja, tembaga, seng, dan aluminium (jenis logam). Adapun penghantar yang kurang baik/penghantar yang buruk disebut isolator kalor, misalnya kayu, kaca, wol, kertas, dan plastic (jenis bukan logam). Bagaimana halnya dengan air? Termasuk konduktor atau isolatorkah air itu? Coba apa ada yang tahu?


Perpindahan Kalor secara Konveksi
Perpindahan kalor secara konveksi terjadi pada zat cair dan gas. Perpindahan kalor secara konveksi terjadi karena adanya perbedaan massa jenis dalam zat tersebut. Perpindahan kalor yang diikuti oleh perpindahan partikel-partikel zatnya disebut konveksi/aliran. Selain perpindahan kalor secara konveksi terjadi pada zat cair, ternyata konveksi juga dapat terjadi pada gas/udara. Peristiwa konveksi kalor melalui penghantar gas sama dengan konveksi kalor melalui penghantar air. Kegiatan tersebut juga dapat digunakan untuk menjelaskan prinsip terjadinya angin darat dan angin laut.
  • Angin Darat
Angin darat terjadi pada malam hari dan berhembus dari darat ke laut. Hal ini terjadi karena pada malam hari udara di atas laut lebih panas dari udara di atas darat, sehingga udara di atas laut naik diganti udara di atas darat. Maka terjadilah aliran udara dari darat ke laut. Angin darat dimanfaatkan oleh para nelayan menuju ke laut untuk menangkap ikan.
  • Angin Laut
Angin laut terjadi pada siang hari dan berhembus dari laut ke darat. Hal ini terjadi karena pada siang hari udara di atas darat lebih panas dari udara di atas laut, sehingga udara di atas darat naik diganti udara di atas laut. Maka terjadilah aliran udara dari laut ke darat. Angin laut dimanfaatkan oleh nelayan untuk kembali ke darat atau pantai setelah menangkap ikan. Pemanfaatan konveksi dalam kehidupan sehari-hari, antara lain: pada sistem pendinginan mobil (radiator), pembuatan cerobong asap, dan lemari es.


Perpindahan Kalor secara Radiasi
Bagaimanakah energi kalor matahari dapat sampai ke bumi? Telah kita ketahui bahwa antara matahari dengan bumi berupa ruang hampa udara, sehingga kalor dari matahari sampai ke bumi tanpa melalui zat perantara. Perpindahan kalor tanpa melalui zat perantara atau medium ini disebut radiasi/hantaran. Contoh perpindahan kalor secara radiasi, misalnya pada waktu kita mengadakan kegiatan perkemahan, di malam hari yang dingin sering menyalakan api unggun. Saat kita berada di dekat api unggun badan kita terasa hangat karena adanya perpindahan kalor dari api unggun ke tubuh kita secara radiasi. Walaupun di sekitar kita terdapat udara yang dapat memindahkan kalor secara konveksi, tetapi udara merupakan penghantar kalor yang buruk (isolator). Jika antara api unggun dengan kita diletakkan sebuah penyekat atau tabir, ternyata hangatnya api unggun tidak dapat kita rasakan lagi. Hal ini berarti tidak ada kalor yang sampai ke tubuh kita, karena terhalang oleh penyekat itu. Dari peristiwa api unggun dapat disimpulkan bahwa: 
  • dalam peristiwa radiasi, kalor berpindah dalam bentuk cahaya, karena cahaya dapat merambat dalam ruang hampa, maka kalor pun dapat merambat dalam ruang hampa;
  • radiasi kalor dapat dihalangi dengan cara memberikan tabir/penutup yang dapat menghalangi cahaya yang dipancarkan dari sumber cahaya.

Dimaz Yudha - 2/24/2012 02:04:00 PM

Rabu, 08 Februari 2012

Pemuaian Zat

Rabu, 08 Februari 2012

Kereta api merupakan alat transportasi darat yang relatif aman dan nyaman serta dapat mengangkut penumpang dalam jumlah yang banyak. Kereta berjalan di atas rel. Pada sambungan rel kereta api terdapat sebuah celah, Mengapa harus ada celah? Celah tersebut pada malam hari lebar, sedangkan siang hari menjadi sempit karena terkena sinar matahari.

Sebagian besar zat akan memuai bila dipanaskan dan menyusut ketika didinginkan. Bila suatu zat dipanaskan (suhunya dinaikkan) maka molekul-molekulnya akan bergetar lebih cepat dan amplitudo getaran akan bertambah besar, akibatnya jarak antara molekul benda menjadi lebih besar dan terjadilah pemuaian. Pemuaian adalah bertambahnya ukuran benda akibat kenaikan suhu zat tersebut. Pemuaian dapat terjadi pada zat padat, cair, dan gas.

Pemuaian Zat Padat
Coba kamu amati bingkai kaca jendela di ruang kelasmu! Adakah bingkai jendela yang melengkung? Tahukah kamu apa sebabnya? Bingkai jendela tersebut melengkung tidak lain karena mengalami pemuaian. Pemuaian yang terjadi pada benda, sebenarnya terjadi pada seluruh bagian benda tersebut. Namun demikian, untuk mempermudah pemahaman maka pemuaian dibedakan tiga macam, yaitu pemuaian panjang, pemuaian luas, dan pemuaian volume.

1. Pemuaian Panjang
Pernahkah kamu mengamati kabel jaringan listrik pada pagi hari dan siang hari? Kabel jaringan akan tampak kencang pada pagi hari dan tampak kendor pada siang hari. Kabel tersebut mengalami pemuaian panjang akibat terkena panas sinar matahari. Alat yang digunakan untuk menyelidiki pemuaian panjang berbagai jenis zat padat adalah musschenbroek. Pemuaian panjang suatu benda dipengaruhi oleh panjang mula-mula benda, besar kenaikan suhu, dan tergantung dari jenis benda.
Alat Musschenbroek
Besarnya panjang logam setelah dipanaskan adalah sebesar
Besarnya panjang zat padat untuk setiap kenaikan 1ºC pada zat sepanjang 1 m disebut koefisien muai panjang (α). Hubungan antara panjang benda, suhu, dan koefisien muai panjang dinyatakan dengan persamaan
Keterangan:
L = Panjang akhir (m)
L0 = Panjang mula-mula (m)
ΔL = Pertambahan panjang (m)
α = Koefisien muai panjang (/ºC)
Δt = kenaikan suhu (ºC)

Beberapa Koefisien Muai Panjang Benda

2. Pemuaian Luas
Jika yang dipanaskan adalah suatu lempeng atau plat tipis maka plat tersebut akan mengalami pemuaian pada panjang dan lebarnya. Dengan demikian lempeng akan mengalami pemuaian luas atau pemuaian bidang. Pertambahan luas zat padat untuk setiap kenaikan 1ºC pada zat seluas 1 m^2 disebut koefisien muai luas (β). Hubungan antara luas benda, pertambahan luas suhu, dan koefisien muai luas suatu zat adalah
Keterangan:
A = Luas akhir (m2)
Δ0 = Pertambahan luas (m2)
A0 = Luas mula-mula (m2)
β = Koefisien muai luas zat (/º C)
Δt = Kenaikan suhu (ºC)

Besarnya β dapat dinyatakan dalam persamaan berikut.

3. Pemuaian Volume
Jika suatu balok mula-mula memiliki panjang P0, lebar L0, dan tinggi h0 dipanaskan hingga suhunya bertambah Δt, maka berdasarkan pada pemikiran muai panjang dan luas diperoleh harga volume balok tersebut sebesar
dimana

Keterangan:
V = Volume akhir (m^3)
V0 = Volume mula-mula (m^3)
ΔV = Pertambahan volume (m^3)
γ = Koefisien muai volume (/ºC)
Δt = Kenaikan suhu (ºC)


Pemuaian Zat Cair
Pada zat cair tidak melibatkan muai panjang ataupun muai luas, tetapi hanya dikenal muai ruang atau muai volume saja. Semakin tinggi suhu yang diberikan pada zat cair itu maka semakin besar muai volumenya. Pemuaian zat cair untuk masing-masing jenis zat cair berbeda-beda, akibatnya walaupun mula-mula volume zat cair sama tetapi setelah dipanaskan volumenya menjadi berbeda-beda. Pemuaian volume zat cair terkait dengan pemuaian tekanan karena peningkatan suhu. Titik pertemuan antara wujud cair, padat dan gas disebut titik tripel.
Anomali Air
Khusus untuk air, pada kenaikan suhu dari 0º C sampai 4º C volumenya tidak bertambah, akan tetapi justru menyusut. Pengecualian ini disebut dengan anomali air. Oleh karena itu, pada suhu 4ºC air mempunyai volume terendah. Hubungan volume dengan suhu pada air dapat digambarkan pada grafik berikut.
Pada suhu 4ºC, air menempati posisi terkecil sehingga pada suhu itu air memiliki massa jenis terbesar. Jadi air bila suhunya dinaikkan dari 0ºC – 4ºC akan menyusut, dan bila suhunya dinaikkan dari 4ºC ke atas akan memuai. Biasanya pada setiap benda bila suhunya bertambah pasti mengalami pemuaian. Peristiwa yang terjadi pada air itu disebut anomali air. Hal yang sama juga terjadi pada bismuth dengan suhu yang berbeda. Lakukan kegiatan berikut untuk menyelidiki kecepatan pemuaian pada berbagai macam zat cair.


Pemuaian pada Gas
Mungkin kamu pernah menyaksikan mobil atau motor yang sedang melaju di jalan tiba-tiba bannya meletus?. Ban mobil tersebut meletus karena terjadi pemuaian udara atau gas di dalam ban. Pemuaian tersebut terjadi karena adanya kenaikan suhu udara di ban mobil akibat gesekan roda dengan aspal.

Pemuaian pada gas adalah pemuaian volume yang dirumuskan sebagai
γ adalah koefisien muai volume. Nilai γ sama untuk semua gas, yaitu 1/273 ºC^-1

Pemuaian gas dibedakan tiga macam, yaitu:
a. pemuaian gas pada suhu tetap (isotermal),
b. pemuaian gas pada tekanan tetap (isobar), dan
c. pemuaian gas pada volume tetap (isokhorik).

1. Pemuaian Gas pada Suhu Tetap (Isotermal)
Pernahkah kalian memompa ban dengan pompa manual. Apa yang kalian rasakan ketika baru pertama kali menekan pompa tersebut? Apa yang kalian rasakan ketika kalian menekannya lebih jauh? Awalnya mungkin terasa ringan. Namun, lama kelamaan menjadi berat. Hal ini karena ketika kita menekan pompa, itu berarti volume gas tersebut mengecil. Pemuaian gas pada suhu tetap berlaku hukum Boyle, yaitu gas di dalam ruang tertutup yang suhunya dijaga tetap, maka hasil kali tekanan dan volume gas adalah tetap. Dirumuskan sebagai:
Keterangan:
P = tekanan gas (atm)
V = volume gas (L)

2. Pemuaian Gas pada Tekanan Tetap (Isobar)
Pemuaian gas pada tekanan tetap berlaku hukum Gay Lussac, yaitu gas di dalam ruang tertutup dengan tekanan dijaga tetap, maka volume gas sebanding dengan suhu mutlak gas. Dalam bentuk persamaan dapat dituliskan sebagai:
Keterangan:
V = volume (L)
T = suhu (K)

3. Pemuaian Gas Pada Volume Tetap (Isokhorik)
Pemuaian gas pada volume tetap berlaku hukum Boyle-Gay Lussac, yaitu jika volume gas di dalam ruang tertutup dijaga tetap, maka tekanan gas sebanding dengan suhu mutlaknya. Hukum Boyle-Gay Lussac dirumuskan sebagai
Dengan menggabungkan hukum boyle dan hukum Gay Lussac diperoleh persamaan
Keterangan:
P = tekanan (atm)
V = volume (L)
T = suhu (K)

Dimaz Yudha - 2/08/2012 09:31:00 PM

Selasa, 22 November 2011

Zat dan wujudnya

Selasa, 22 November 2011


ZAT
Zat didefinisikan sebagai segala sesuatu yang mempunyai massa dan menempati ruang. Maksud dari menempati ruang disini adalah memiliki volume. Zat secara umum dibagi menjadi tiga antara lain zat padat, zat gas dan zat cair. Tetapi karena didunianya ini sebenarnya pembagian tersebut tidak cukup untuk menggolongkan macam-macam zat. Pembahasan selanjutnya akan dibahas lebih detail pada pelajarankimiaPelajaran kimia sendiri akan dibahas di kelas 10 sampai dengan kelas 13
Zat Padat
Benda dikatakan termasuk zat padat bila memiliki ciri-ciri sebagai berikut :
  • Jarak antar partikelnya sangat rapat
  • Gaya tarik antar partikelnya sangat kuat
  • Bentuknya tetap
  • Volumenya tetap
Karena gaya tarik antar partikel pada zat padat sangat kuat maka bentuk zat padat cenderung tetap bila tidak ada gaya atau reaksinya yang mempengaruhinya. Contoh zat padat adalah batu, kayu, besi dll.
Ciri-ciri zat cair adalah sebagai berikut :
  • Jarak antar partikelnya agak renggang
  • Gaya tarik antar partikelnya agak kuat
  • Volumenya tetap
  • Bentuknya berubah
Gaya tarik antar partikel zat cair agak kuat artinya lebih lemah dibanding dengan gaya tarik pada partikel zat padat. Agak lemahnya gaya tarik ini mengakibatkan bentuk zat cair dapat berubah-ubah sesuai dengan tempatnya (wadahnya).
Zat gas mempunyai ciri-ciri sebagai berikut :
  • Jarak antar partikelnya sangat renggang
  • Gaya tarik antar partikelnya sangat lemah
  • Volumenya berubah
  • Bentuknya berubah
Lemahnya gaya tarik menarik antar partikel pada zat gas menyababkan bentuk dan volume zat gas selalu berubah sesuai dengan ruang yang ditempatinya. Yang menjadi ciri khas suatu zat sehinggaa dapat membedakan dari satu zat dengan zat lain adalah massa jenis.
MASSA JENIS
Massa jenis adalah perbandingan antara besarnya massa suatu zat dengan volume zat tersebut. Setiap zat mempunyai massa jenis yang berbeda-beda. Massa jenis zat tidak dipengaruhi oleh bentuk benda. Walaupun bentuk benda berbeda-beda selama terbuat dari jenis bahan yang sama maka massa jenis zat tersebut adalah sama. Kadang-kadang massa jenis juga disebut dengan rapat massa.
Untuk menentukan besar massa jenis suatu zat dipergunakan persamaan sebagai berikut :
Rumus massa jenis
Gaya Kohesi dan Adhesi
Gaya kohesi adalah gaya tarik menarik antar partikel yang sejenis, sebagai contoh partikel raksa dengan partikel raksa, partikel air dengan partikel air, dll.
Gaya adhesi adalah gaya tarik menarik antar partikel yang tak sejenis, sebagai contoh gaya tarik menarik antar partikel kapur dengan partikel papan tulis, partikel tinta dengan partikel kertas, dll.
Kapilaritas
Adalah peristiwa merembesnya zat cair melalui celah-celah kecil. Kapilaritas disebabkan karena adanya gaya Adhesi antaraa partikel zat cair dengan partikel zat yang lain.
Contoh kapilaritas adalah naiknya minyak pada sumbu kompor,  basahnya baju ketika dicuci, dan lain-lain.
Apabila raksa dimasukkan kedalam pipa kapiler maka raksa yang ada pada pipa yang lebih besar akan lebih tinggi dari pada pipa yang lebih kecil, ini disebabkan karena gaya kohesi raksa lebih besar dari pada gaya adhesi raksa dengan partikel pipa kapiler. Sedangkan apabila air dimasukkan kedalam pipa kapiler maka air yang berada pada pipa yang lebih besar akan lebih rendah dari pada pada pipa yang lebih kecil, hal ini disebabkan karena gaya adhesi partikel air dengan partikel pipa kapiler lebih besar dari pada gaya kohesinya. Peristiwa yang terjadi pada raksa tersebut disebut dengan miniskus cembung, dan yang terjadi pada air disebut dengan miniskus cekung.

Dimaz Yudha - 11/22/2011 04:36:00 PM

Sabtu, 12 November 2011

Hukum kekekalan energi

Sabtu, 12 November 2011

Energi Memiliki Hukum kekekalan, di mana energi itu tidak diciptakan dan tidak dapat hilang terpakaim atau musnah tetapi hanya berubah.
Banyaknya energi yang berubah menjadi bentuk energi lain sama dengan banyaknya energi yang berkurang sehingga total energi dalam sistem tersebut adalah tetap. Dengan demikian, dapat kita simpulkan bahwa energi tidak dapat diciptakan atau dimusnahkan, energi hanya dapat berubah bentuk menjadi bentuk energi lain. Pernyataan ini dikenal sebagai hukum kekekalan energi.
Perubahan Bentuk Energi
Suatu bentuk energi dapat berubah menjadi bentuk energi yang lain. Perubahan bentuk energi yang biasa dimanfaatkan sehari-hari antara lain sebagai berikut:
  • Energi listrik menjadi energi panas. Contoh perubahan energi listrik menjadi energi panas terjadi pada mesin pemanas ruangan, kompor listrik, setrika listrik, heater, selimut listrik, dan solder.
  • Energi mekanik menjadi energi panas. Contoh perubahan energi mekanik menjadi energi panas adalah dua buah benda yang bergesekan. Misalnya, ketika kamu menggosok-gosokkan telapak tanganmu maka kamu akan merasa panas.
  • Energi mekanik menjadi energi bunyi. Perubahan energi mekanik menjadi energi bunyi dapat terjadi ketika kita bertepuk tangan atau ketika kita memukulkan dua buah benda keras.
  • Energi kimia menjadi energi listrik. Perubahan energi pada baterai dan aki merupakan contoh perubahan energi kimia menjadi energi listrik.
  • Energi listrik menjadi energi cahaya dan kalor. Perubahan energi listrik menjadi energi cahaya dan kalor terjadi pada berpijarnya bohlam lampu. Seperti telah disebutkan sebelumnya bahwa energi cahaya biasanya disertai bentuk energi lainnya, misalnya kalor. Coba dekatkan tanganmu ke bohlam lampu yang berpijar! Lama kelamaan tanganmu akan merasa semakin panas.
  • Energi cahaya menjadi energi kimia. Perubahan energi cahaya menjadi energi kimia dapat kita amati pada proses pemotretan hingga terbentuknya foto.

Dimaz Yudha - 11/12/2011 12:15:00 PM

Kamis, 03 November 2011

Jangka sorong

Kamis, 03 November 2011

Jangka sorong digital dengan ketelitian 0.01 mm
Jangka sorong manual
Cara menggunakan jangka sorong

Jangka sorong adalah alat ukur yang ketelitiannya dapat mencapai seperseratus milimeter. Terdiri dari dua bagian, bagian diam dan bagian bergerak. Pembacaan hasil pengukuran sangat bergantung pada keahlian dan ketelitian pengguna maupun alat. Sebagian keluaran terbaru sudah dilengkapi dengan display digital. Pada versi analog, umumnya tingkat ketelitian adalah 0.05mm untuk jangka sorang dibawah 30cm dan 0.01 untuk yang diatas 30cm.

Kegunaan

Kegunaan jangka sorong adalah:
  • untuk mengukur suatu benda dari sisi luar dengan cara diapit;
  • untuk mengukur sisi dalam suatu benda yang biasanya berupa lubang (pada pipa, maupun lainnya) dengan cara diulur;
  • untuk mengukur kedalamanan celah/lubang pada suatu benda dengan cara "menancapkan/menusukkan" bagian pengukur. Bagian pengukur tidak terlihat pada gambar karena berada di sisi pemegang.

Dimaz Yudha - 11/03/2011 03:36:00 PM

Rabu, 02 November 2011

pengertian dan devinisi unsur senyawa dan campuran pada zat

Rabu, 02 November 2011

Zat Adalah sesuatu yang memiliki massa dan menempati ruang. Zat bisa berupa zat padat, zat cair dan zat gas. Zat berdasarkan kemurniannya dapat dibagi lagi menjadi tiga, yaitu :

A. Unsur

Unsur adalah suatu zat yang sudah tidak bisa dibagi-bagi lagi menjadi bagian yang lebih kecil.

Contoh unsur :
- Unsur Emas / Au (Aurum)
- Unsur Nitrogen / N
- Unsur Platina / Pt
- Unsur Karbon / Carbon / C

B. Senyawa

Senyawa adalah zat tunggal yang terdiri atas beberapa unsur yang saling kait-mengait.

Contoh Senyawa :
- Senyawa Oksigen / O2
- Senyawa Air / H2O
- Senyawa Alkohol / C2 H5 OH
- Senyawa Garam Dapur / NaCl

C. Campuran

Campuran adalah zat yang tersusun dari beberapa zat yang lain jenis dan tidak tetap susunannya dari unsur dan senyawa.

Contoh Campuran :
- Udara
- Tanah
- Air

----

Tambahan Daftar Istilah / Pengertian / Definisi :
- Pengertian Atom adalah unsur yang merupakan unsur yang terkecil dari suatu zat.
- Pengertian Molekul adalah gabungan dari atom-atom unsur yang berbeda  

.Unsur, Senyawa, dan Campuran
Di alam raya ini zat diklasifikasikan menjadi 2 :
1. Zat Murni (Pure Substance)
Zat Murni terdiri atas :
a. Unsur (ELement)
Unsur adalah suatu atom tunggal ataupun gabungan dari atom tunggal yang disebut molekul unsur, bahkan zat tunggal. Jadi unsur bisa berupa atom tunggal ataupun molekul yang disusun dari atom sejenis.
Contohnya : Atom O (oksigen) yang di alam raya selalu berupa molekul Oksigen (O2) ataupun ozon (O3), atom Nitrogen (N) ataupun molekul Nitrogen (N2).
b. Senyawa (Compound)
Senyawa adalah gabungan dari beberapa atom yang tidak sejenis, tersusun atas perbandingan yang tetap dan terbentuk dengan reaksi kimia. Sehingga bagian terkecil dari senyawa adalah molekul.
Contoh dari senyawa adalah : air (H2O), garam dapur (NaCl) atapun asam sulfat (H2SO4)
Senyawa bisa diuraikan menjadi unsur-unsur pembentuknya dengan reaksi kimia. Contoh H2O bisa diuraikan menjadi atom unsur H dan atom unsur O.
2. Campuran(Mixture)
Campuran adalah penggabungan dua atau lebih zat murni dengan perbandingan yang tidak tetap secara fisis.
Campuran dibagi menjadi 3 :
a. Campuran Homogen (Homogeneous Mixture)
Campuran ini disebut juga larutan (solution) yaitu campuran yang serba sama, atau campuran yang antara pelarut dan zat terlarut sulit sekali dibedakan.
Contohnya : larutan gula, dan larutan garam
b. Campuran Heterogen (Heterogeneous Mixture)
Campuran ini disebut suspensi (Suspend) yaitu campuran yang tidak sama, sehingga mudah dibedakan.
Contohnya campuran air dan tanah, serta campuran pasir dan air.
c. Koloid (Colloid)
Campuran ini mirip sekali dengan larutan, namun partikel penyusunnya lebih besar dibandingkan dengan larutan.
Koloid bisa berupa padatan contohnya agar-agar, gas contohnya asap, dan cairan cotohnya air santan, air susu, air sabun, dan cat.

Dalam dunia zat diklasifikasi
menjadi dua: murni, campuran.
Unsur, senyawa adalah zat murninya
larutan, suspend, koloid : campuran
Campuran homogen disebut larutan
Campuran heterogennya disebut suspend
Koloid mirip larutan namun partikelnya
lebih besar jika dibandingkan dengan larutan
ho uwo ooooooo
Kumpulan atom kan membentuk molekul
Terdiri atas unsur, senyawa.
Molekul unsur dari satu jenis atom
Sedang senyawa lebih dari satu
Contohnya unsur H2 hidrogen, O2 oksigen, dan N2 nitrogen
Contoh molekul senyawa H2O air, NaCl garam, H2SO4 asam sulfat.
Senyawa terbentuk dari reaksi kimia wo ooo
Campuran hanya dengan reaksi fisika…….
Campuran homogen : larutan gula
Heterogennya : campuran air dan tanah
Koloid mirip larutan, contohnya santan,
agar-agar, air sabun, asap, cat, air susu…
Contohnya unsur H2 hidrogen, O2 oksigen, dan N2 nitrogen
Contoh molekul senyawa H20 air, NaCl garam, H2SO4 asam sulfat.
Campuran homogen : larutan gula
Heterogennya : campuran air dan tanah
Koloid mirip larutan contohnya santan,
agar-agar, air sabun, asap, cat, air susu

·         Unsur, Senyawa dan Campuran dapat kita beda-bedakan dilihat dari sifat kimia dan fisikannya. Kita dapat menemukan unsur dalam keadaan bebas, artinya unsur tersebut tidak bergabung dengan unsur lain membentuk senyawa. Namun demikian, di alam ini lebih banyak ditemukan unsur yang senantiasa mengadakan ikatan dengan unusr lain. Unsur-unsur demikian disebut dengan unsur yang reaktif. Apakah perbedaan antara unsur, senyawa dan campuran tersebut?
·         a.Perbedaan Unsur dan Senyawa
Unsur merupakan penyusun senyawa. Meskipun demikian, sifat-si
fat tidak dapat di temukan pada senyawa. Senyawa telah menjelma menjadi zat yang baru.
Contoh:
Reaksi adalah pembakaran antara logam magnesium (Mg) dan oksigen (O2), diperoleh zat baru yang disebut senyawa, yaitu:
·         Mg + O2 ——–> MgO
·         Pada reaksi tersebut, dihasilkan zat baru yang sifatnya berbeda dari unsur-unsur penyusunnya.
·         b. Perbedaan Unsur dan Campuran
Dalam suatu campuran yang terdiri dari beberapa unsur, sifat-sifat unusur dapat diidentifikasi/diketahui. Artinya, sifat-sifat unsur yang semula (awal) tidak berubah ketika unusur tersebut bercampur dengan unsur lain membentuk suatu campuran. hal ini dikarenakan proses pemebntukan campuran terjadi secara fisika.
Ada dua sifat campuran, yaitu campuran homogen dan campuran heterogen.
·         c. Perbedaan Senyawa dan Campuran
Komposisi unsur-unsur penyusun suatu campuran tidak tertentu sehingga kita tidak dapat menentukan rumus kimia suatu campuran. Berbeda halnya dengan senyawa yang memiliki komposisi penyusun yang tetap. Perbedaan senyawa dan campuran yang lain adalah pemisahan campuran pada umumnya dapat dilakukan secara fisika.
Pemisahan secara fisika adalah pemisahan suatu zat berdasarkan sifat-sifat fisika suatu benda yang meliputi ukuran partikel dan titik didih.
Contoh, pemisahan campuran batu dan pasir dilakukan dengan pengayakan.
Contoh lain, adalah pemisahan fraksi minyak bumi dilakukan dengan teknik Distilasi, yaitu pemisahan campuran yang didasarkan pada perbedaan titik didih masing-masing komponen di dalam campuran.
Sedangkan, cara pemisahan senyawa menjadi zat-zat penyusunnya yang berupa unsur-unsur dilakukan secara kimia, artinya reaksi gerjadi pada tingkat molekuler yang melibatkan pengubahan, penataan, dan pengaturan kembali atom-atom penyusun senyawa tersebut. Contohnya, untuk mendapatkan Hidrogen dan Oksigen dari air dapat dilakukan dengan elektrolisis.
Reaksi elektrolisis, air secara sederhana dituliskan sbb:
H20 ——–> H + O
  • HIDROKARBON | Kekhasan Atom Karbon | Tata Nama Senyawa Hidrokarbon
A. Senyawa Karbon Sejak zaman dahulu orang sudah mengenal bahwa ...
  • Sistem Periodik Unsur-Unsur | Perkembangan Sistem Periodik | Sistem Periodik dan Konfigurasi Elektron
A. Sistem Periodik Unsur-Unsur Sampai saat ini, sudah dikenal 118 ...
  • Ikatan Kimia | Ikatan Hidrogen
Ikatan Hidrogen Ikatan hidrogen merupakan gaya tarik menarik antara atom ...
  • Ikatan Kimia | Ikatan Kovalen | Ikatan ion | Unsur Kimia | Sistem Periodik Unsur | Rumus Kimia
Ikatan Kimia Segala sesuatu di alam ini selalu membentuk suatu ...

Dimaz Yudha - 11/02/2011 06:23:00 PM